Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

база данных
Журнал
Год
Годовой диапазон
1.
Front Immunol ; 13: 936106, 2022.
Статья в английский | MEDLINE | ID: covidwho-2109761

Реферат

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection triggers inflammatory clinical stages that affect the outcome of patients with coronavirus disease 2019 (COVID-19). Disease severity may be associated with a metabolic imbalance related to amino acids, lipids, and energy-generating pathways. The aim of this study was to characterize the profile of amino acids and acylcarnitines in COVID-19 patients. A multicenter, cross-sectional study was carried out. A total of 453 individuals were classified by disease severity. Levels of 11 amino acids, 31 acylcarnitines, and succinylacetone in serum samples were analyzed by electrospray ionization-triple quadrupole tandem mass spectrometry. Different clusters were observed in partial least squares discriminant analysis, with phenylalanine, alanine, citrulline, proline, and succinylacetone providing the major contribution to the variability in each cluster (variable importance in the projection >1.5). In logistic models adjusted by age, sex, type 2 diabetes mellitus, hypertension, and nutritional status, phenylalanine was associated with critical outcomes (odds ratio=5.3 (95% CI 3.16-9.2) in the severe vs. critical model, with an area under the curve of 0.84 (95% CI 0.77-0.90). In conclusion the metabolic imbalance in COVID-19 patients might affect disease progression. This work shows an association of phenylalanine with critical outcomes in COVID-19 patients, highlighting phenylalanine as a potential metabolic biomarker of disease severity.


Тема - темы
COVID-19 , Diabetes Mellitus, Type 2 , Humans , SARS-CoV-2 , Cross-Sectional Studies , Amino Acids , Phenylalanine
2.
Viruses ; 14(9)2022 09 07.
Статья в английский | MEDLINE | ID: covidwho-2010316

Реферат

SARS-CoV-2 uses the ACE2 receptor and the cellular protease TMPRSS2 for entry into target cells. The present study aimed to establish if the TMPRSS2 polymorphisms are associated with COVID-19 disease. The study included 609 patients with COVID-19 confirmed by RT-PCR test and 291 individuals negative for the SARS-CoV-2 infection confirmed by RT-PCR test and without antibodies anti-SARS-CoV-2. Four TMPRSS2 polymorphisms (rs12329760, rs2298659, rs456298, and rs462574) were determined using the 5'exonuclease TaqMan assays. Under different inheritance models, the rs2298659 (pcodominant2 = 0.018, precessive = 0.006, padditive = 0.019), rs456298 (pcodominant1 = 0.014, pcodominant2 = 0.004; pdominant = 0.009, precessive = 0.004, padditive = 0.0009), and rs462574 (pcodominant1 = 0.017, pcodominant2 = 0.004, pdominant = 0.041, precessive = 0.002, padditive = 0.003) polymorphisms were associated with high risk of developing COVID-19. Two risks (ATGC and GAAC) and two protectives (GAGC and GAGT) haplotypes were detected. High levels of lactic acid dehydrogenase (LDH) were observed in patients with the rs462574AA and rs456298TT genotypes (p = 0.005 and p = 0.020, respectively), whereas, high heart rate was present in patients with the rs462574AA genotype (p = 0.028). Our data suggest that the rs2298659, rs456298, and rs462574 polymorphisms independently and as haplotypes are associated with the risk of COVID-19. The rs456298 and rs462574 genotypes are related to high levels of LDH and heart rate.


Тема - темы
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Exonucleases , Humans , Lactic Acid , Oxidoreductases , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics
3.
Front Immunol ; 13: 812940, 2022.
Статья в английский | MEDLINE | ID: covidwho-1731774

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic, affecting more than 219 countries and causing the death of more than 5 million people worldwide. The genetic background represents a factor that predisposes the way the host responds to SARS-CoV-2 infection. In this sense, genetic variants of ACE and ACE2 could explain the observed interindividual variability to COVID-19 outcomes. In order to improve the understanding of how genetic variants of ACE and ACE2 are involved in the severity of COVID-19, we included a total of 481 individuals who showed clinical manifestations of COVID-19 and were diagnosed by reverse transcription PCR (RT-PCR). Genomic DNA was extracted from peripheral blood and saliva samples. ACE insertion/deletion polymorphism was evaluated by the high-resolution melting method; ACE single-nucleotide polymorphism (SNP) (rs4344) and ACE2 SNPs (rs2285666 and rs2074192) were genotyped using TaqMan probes. We assessed the association of ACE and ACE2 polymorphisms with disease severity using logistic regression analysis adjusted by age, sex, hypertension, type 2 diabetes, and obesity. The severity of the illness in our study population was divided as 31% mild, 26% severe, and 43% critical illness; additionally, 18% of individuals died, of whom 54% were male. Our results showed in the codominant model a contribution of ACE2 gene rs2285666 T/T genotype to critical outcome [odds ratio (OR) = 1.83; 95%CI = 1.01-3.29; p = 0.04] and to require oxygen supplementation (OR = 1.76; 95%CI = 1.01-3.04; p = 0.04), in addition to a strong association of the T allele of this variant to develop critical illness in male individuals (OR = 1.81; 95%CI = 1.10-2.98; p = 0.02). We suggest that the T allele of rs2285666 represents a risk factor for severe and critical outcomes of COVID-19, especially for men, regardless of age, hypertension, obesity, and type 2 diabetes.


Тема - темы
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Polymorphism, Single Nucleotide/genetics , Alleles , COVID-19/virology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/virology , Genotype , Humans , Male , SARS-CoV-2/pathogenicity
Критерии поиска